
Data cleaning and feature engineering

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Understand your data

 It’s pretty bad practice to treat a dataset as a black box. Before you start training

models, you should explore and visualize your data to gain insights about what makes

it predictive, which will inform feature engineering and screen for potential issues

 If your data includes images or natural language text, take a look at a few samples (and

their labels) directly

 If your data contains numerical/categorical features, it’s a good idea to plot the histogram

of feature values to get a feel for the range of values taken and the frequency of different

values

 Are some samples missing values for some features? If so, you’ll need to deal with this

when you prepare the data

 If your task is a classification problem, print the number of instances of each class in your

data. Are the classes roughly equally represented? If not, you will need to account for this

imbalance

 If your data includes location information, plot it on a map. Do any clear patterns emerge?
2

https://www.kaggle.com/learn/geospatial-analysis

Prepare the data

 As you’ve learned before, models typically don’t ingest raw data

 Data preprocessing/preparation aims at making the raw data at hand more

amenable to model

 This includes vectorization, normalization, encoding or handling missing values

 Many preprocessing techniques are domain-specific (for example, specific to text data or

image data)

 We will focus on tabular data here

3

Data cleaning

 Data cleaning is a key part of data science, but it can be deeply frustrating.

 Why are some of your text fields garbled?

 What should you do about those missing values?

 Why aren’t your strings/dates formatted correctly?

 How can you quickly clean up inconsistent/duplicated data entry?

 The importance of cleaning data

1. Ease of use and reuse: When data is properly organized and normalized it’s easier to

search, use, and share with others

2. Consistency: Data science often requires working with more than one dataset, where

datasets from different sources need to be joined together. Making sure that each

individual data set has common standardization will ensure that the data is still useful

when they are all merged into one dataset

3. Model accuracy/interpretability: Data that has been cleaned improves the models

4

Handling missing values - Figure out why the data is missing

 For dealing with missing values, you'll need to use your intuition to figure out

why the value is missing. One of the most important questions you can ask

yourself to help figure this out is this:

 Is this value missing because it wasn't recorded or because it doesn't exist?

 If a value is missing because it doesn't exist (like the height of the oldest child of someone

who doesn't have any children) then it doesn't make sense to try and guess what it might be.

These values you probably do want to keep as `NaN`

 If a value is missing because it wasn't recorded, then you can try to guess what it might

have been based on the other values in that column and row. This is called imputation

 For example, if we form a matrix of the ratings (on a scale from 1 to 5) that 𝑛 customers have

given to the entire Netflix catalog of 𝑝 movies, then most of the matrix will be missing, since no

customer will have seen and rated more than a tiny fraction of the catalog

 If we can impute the missing values well, then we will have an idea of what each customer will

think of movies they have not yet seen

5

1. Handling missing values

 Sometimes you could just discard the feature entirely, but you don’t necessarily

have to

 If the feature is categorical, it’s safe to create a new category that means “the value is

missing.” The model will automatically learn what this implies with respect to the targets.

 If the feature is numerical, avoid inputting an arbitrary value like "0", because it may create

a discontinuity in the latent space formed by your features, making it harder for a model

trained on it to generalize. Instead, consider replacing the missing value with the average

or median value for the feature in the dataset. You could also train a model to predict the

feature value given the values of other features

6

Handling missing values - Dropping or simple filling

 One option is drop it

 If you're in a hurry or don't have a reason to figure out why your values are missing, one

option you have is to just remove any rows or columns that contain missing values

 However, this comes at the price of losing data which may be valuable (even though

incomplete)

 You could set a threshold to retain more data

 You can also keep it as it is, but you should fill it with a value

 Using something like −9999 which is a value out of normal range and feed it into

ensemble model or random forest

 Another option is to try and fill it with logical order

 You could use entry below or previous entry to fill the value

 This makes a lot of sense for datasets where the observations have some sort of logical

order to them
7

Handling missing values - Imputation

 A better strategy is to impute the missing values, i.e., to infer them from the

known part of the data

 One type of imputation algorithm is univariate, which imputes values in the 𝑖-th feature

dimension using only non-missing values in that feature dimension

 By contrast, multivariate imputation algorithms use the entire set of available feature

dimensions to estimate the missing values

 If 𝑥𝑖𝑗 is missing, then we could replace it by the mean of the 𝑗th column (using

the non-missing entries to compute the mean)

 You could also fill with other representative value like the medium

 Categorical variable can be filled with most frequent value or treat it as a separate level

 Although this is a common and convenient strategy, often we can do better by exploiting

the correlation between the variables

8

Handling missing values - Iterative strategy

 It does so in an iterated round-robin fashion: at each step, a feature column is

designated as output 𝑦 and the other feature columns are treated as inputs 𝑋
 The row contains valid value are treated as training data while the row with missing value

are treated as target

 A regressor is fit on (𝑋, 𝑦) for known 𝑦. Then, the regressor is used to predict the missing

values of 𝑦. This is done for each feature in an iterative fashion, and then is repeated for a

fix number of imputation rounds. The results of the final imputation round are returned

 You can pass different regressors for predicting missing feature values

9

Handling missing values - Nearest neighbor strategy

 The KNN approach provides imputation for filling in missing values using the

k-Nearest Neighbors approach

 By default, a Euclidean distance metric is used to find the nearest neighbors

 Each missing feature is imputed using values from 𝑛 nearest observations that have a value

for the feature. The feature of the neighbors are averaged uniformly or weighted by

distance to each neighbor

 If a sample has more than one feature missing, then the neighbors for that sample can be

different depending on the particular feature being imputed

10

Handling missing values - Matrix completion

 We can assume that the first 𝑀 principal component score and loading vectors

provide the “best” approximation to the data matrix 𝑋

 Now, some of the observations 𝑥𝑖𝑗 are missing. One can both impute the

missing values and solve the principal component problem at the same time

min
𝐴∈𝑅𝑛×𝑀, 𝐵∈𝑅𝑝×𝑀

{ ෍

(𝑖,𝑗)∈𝑂

(𝑥𝑖𝑗 − ෍

𝑚=1

𝑀

𝑎𝑖𝑚𝑏𝑗𝑚)
2}

where 𝑂 is the set of all observed pairs of indices (𝑖, 𝑗), a subset of the possible 𝑛 ×
𝑝 pairs

 We can estimate a missing observation 𝑥𝑖𝑗 using 𝑥𝑖𝑗 = σ𝑚=1
𝑀 ො𝑎𝑖𝑚 ෠𝑏𝑗𝑚

 We can (approximately) recover the 𝑀 principal component scores and loadings, as we did

when the data were complete

11

12

Duplicate entry

 In addition to missing data, you will often encounter duplicated data in real-

world datasets. Fortunately, many packages provides an easy means of

detecting and removing duplicate entries

 You can identifying duplicates and drop them using pandas

 Removing duplicate data is an essential part of almost every data-science

project. Duplicate data can change the results of your analyses and give you

inaccurate results!

13

letters numbers

A 1

B 2

A 1

B 3

B 3

Inconsistent entry

 Data can have inconsistencies in how it’s presented

 This can cause problems in searching for and representing the value, where it’s seen within

the dataset but is not properly represented in visualizations or query results. Common

formatting problems involve resolving whitespace, dates, inconsistent names and data

types

 Resolving formatting issues is typically up to the people who are using the data. For

example, standards on how dates and numbers are presented can differ by country

 Fuzzy matching is the process of automatically finding text strings that are

very similar to the target string

 In general, a string is considered "closer" to another one the fewer characters you'd need to

change if you were transforming one string into another

 So "apple" and "snapple" are two changes away from each other (add "s" and "n") while

"in" and "on" are one change away (replace "i" with "o")

14

https://www.kaggle.com/code/alexisbcook/parsing-dates
https://en.wikipedia.org/wiki/Approximate_string_matching

Character encoding

 Character encodings are specific sets of rules for mapping from raw binary

byte strings (that look like this: 0110100001101001) to characters that make up

human-readable text (like "hi")

 There are many different encodings, and if you tried to read in text with a different

encoding than the one it was originally written in, you ended up with scrambled text

 You might also end up with a "unknown" characters. There are what gets printed when

there's no mapping between a particular byte and a character in the encoding you're using

to read your byte string in

 Character encoding mismatches are less common today than they used to be, but it's

definitely still a problem. There are lots of different character encodings, but the main one

you need to know is UTF-8​

 UTF-8 is the standard text encoding. All Python code is in UTF-8 and, ideally, all your data

should be as well. It's when things aren't in UTF-8 that you run into trouble

15

2. Scaling of the variables matters

 An eclectic online retailer sells two items: socks and computers, the same

scaling might be undesirable, since

 Computers are more expensive than socks and so the online retailer may be more interested

in encouraging shoppers to buy computers than socks, and a large difference in the number

of socks purchased by two shoppers may be less informative about the shoppers’ overall

shopping preferences than a small difference in the number of computers purchased

16

Scaling and standardization

 In both cases, you're transforming the values of numeric variables so that the

transformed data points have specific helpful properties. The difference is that:

 Min-max scaling means that you're transforming your data so that it fits within

a specific scale, like 0-100 or 0-1. To scale between [𝑎, 𝑏]

෤𝑥 = 𝑎 +
(𝑥 − 𝑥𝑚𝑖𝑛)(𝑏 − 𝑎)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 You can use standardization If you expect your data can be described as a

normal distribution

෤𝑥𝑖𝑗 =
𝑥𝑖𝑗 − ҧ𝑥𝑗

1
𝑛
σ𝑖=1
𝑛 (𝑥𝑖𝑗 − ҧ𝑥𝑗)

2

17

Nonlinear transform

 There are also other non-linear transformation

 Sometimes you may want to use logarithm transform for the currency

 Sometimes you may want to use binning to transform numerical value into categorical one

 In some cases, you'll normalize your data if you're going to be using a machine

learning or statistics technique that assumes your data is normally distributed.

Some examples of these include linear discriminant analysis (LDA) and

Gaussian naive Bayes

 Power transforms are a family of parametric, monotonic transformations that aim to map

data from any distribution to as close to a Gaussian distribution as possible in order to

stabilize variance and minimize skewness

 Box-cox (applied to strictly positive data) and Yeo-Jonson transform

 Quantile transform provides a non-parametric transformation to map the data to a uniform

distribution with values between 0 and 1 or a Gaussian distribution

18

3. Encoding categorical variable – One hot encoding

 Categorical data can be extremely useful. However, in its original form, it is

unrecognizable to most models. We can use different “encoding” techniques

 One hot encoding convert it to dummy variables by produces one feature per category

 In linear and logistic regression, one hot encoding causes problems with multicollinearity. In such

cases, one dummy is omitted (its value can be inferred from the other values)

 The number of categorical features should be small so that it can be effectively applied

19

Animal Target isCat isDog isHamster

Cat 1 1 0 0

Hamster 0 0 0 1

Cat 0 1 0 0

Dog 1 0 1 0

Hamster 0 0 0 1

Cat 1 1 0 0

Dog 0 0 1 0

Encoding categorical variable – Label encoding

 Another popular encoding is ordinal encoding or label encoding, it transforms

each categorical feature to one new feature of integers (0 to number of

features-1)

 This coding suggests an ordering. Furthermore, it implies that the difference between cat

and dog is the same as between dog and hamster

20

Animal Target Animal_encoded

Cat 1 0

Hamster 0 2

Cat 0 0

Dog 1 1

Hamster 0 2

Cat 1 0

Dog 0 1

Encoding categorical variable – Target encoding

 In target encoding or mean encoding, it that replaces a feature's categories with

some number derived from the target

 Group the data by each category and count the number of occurrences of each target.

Calculate the average of target given each specific category and add to new column

 A target encoding derives numbers for the categories using the feature's most important

property: its relationship with the target

21

Animal Target Animal_encoded

Cat 1 0.67

Hamster 0 0.50

Cat 0 0.67

Dog 0 0.00

Hamster 1 0.50

Cat 1 0.67

Dog 0 0.00

Encoding categorical variable – Target encoding

 When a category only occurs a few times in the dataset, any statistics

calculated on its group are unlikely to be very accurate and may leak the target

 To avoid target leak and overfitting, target encoding need to be trained on an independent

"encoding" split. You can use cross-validation in practice

22 https://medium.com/@pouryaayria/k-fold-target-encoding-dfe9a594874b

https://medium.com/@pouryaayria/k-fold-target-encoding-dfe9a594874b

Encoding categorical variable – Target encoding

23

 Another solution to these problems is to add smoothing.

The idea is to blend the in-category average with

the overall average. Rare categories get less weight on

their category average and missing categories just get the

overall average
𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔
= 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑖𝑛_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 + (1 − 𝑤𝑒𝑖𝑔ℎ𝑡) × 𝑜𝑣𝑒𝑟𝑎𝑙𝑙

 An easy way to determine the value for weight is to

compute an m-estimate:
𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑛 / (𝑛 + 𝑚)

where 𝑛 is the total number of times that category occurs in the

data. The parameter 𝑚 determines the "smoothing factor".

Larger values of 𝑚 put more weight on the overall estimate

What is Feature engineering?

 One of the most important steps on the way to building a great machine

learning model is feature engineering. You might perform it to:

 Improve a model's predictive performance

 Reduce computational or data needs

 Improve interpretability of the results

 The goal of feature engineering is simply to make your data better suited to the

problem at hand

 Consider "apparent temperature" measures like the heat index and the wind chill. These

quantities attempt to measure the perceived temperature to humans based on air

temperature, humidity, and wind speed, things which we can measure directly

 You could think of an apparent temperature as the result of a kind of feature engineering,

an attempt to make the observed data more relevant to what we actually care about: how it

actually feels outside!

24

What is Feature engineering?

 For a feature to be useful, it must have a relationship to the target that your

model is able to learn

25

 Linear models, for instance, are able to learn linear

relationships. So, when using a linear model, your

goal is to transform the features to make their

relationship to the target linear

 Say you were trying to predict the Price of square

plots of land from the Length of one side. Fitting a

linear model directly to Length gives poor results: the

relationship is not linear

 If we square the Length feature to get 'Area', however,

we create a linear relationship. Adding Area to the

feature set means this linear model can now fit a

parabola. Squaring a feature, in other words, gave the

linear model the ability to fit squared features

Feature engineering

 A great first step is to construct a ranking with a feature utility metric, a

function measuring associations between a feature and the target

 Then you can choose a smaller set of the most useful features to develop initially and have

more confidence that your time will be well spent

 We will cover feature selection in next lecture

 Once you've identified a set of features with some potential, it's time to start

developing them. Some tips are below

 Understand the features. Refer to your dataset's data documentation, if available

 Research the problem domain to acquire domain knowledge. If your problem is predicting

house prices, do some research on real-estate for instance. Wikipedia can be a good starting

point, but books and journal articles will often have the best information

 Study previous work. Solution write-ups from past Kaggle competitions are a great

resource

26

https://www.slideshare.net/HJvanVeen/feature-engineering-72376750
https://www.kaggle.com/code/sudalairajkumar/winning-solutions-of-kaggle-competitions/notebook

Tips on discovering/creating new features

 Use data visualization. Visualization can reveal pathologies in the distribution

of a feature or complicated relationships that could be simplified. Be sure to

visualize your dataset as you work through the feature engineering process

 You can identify promising transform by Exploratory Data Analysis (EDA)

 Typical transformation

 Interaction between features

 You can apply arithmetic operations to columns (Ratio, Log, Square…)

 You can compute statistics for each row like the number of missing value, number of zeros, mean,

max, min…

27

Tips on discovering/creating new features

 It's good to keep in mind your model's own strengths and weaknesses when

creating features. Here are some guidelines:

 Linear models learn sums and differences naturally, but can't learn anything more complex

 Ratios seem to be difficult for most models to learn. Ratio combinations often lead to some

easy performance gains

 Linear models and neural nets generally do better with normalized features. Neural nets

especially need features scaled to values not too far from 0. Tree-based models (like

random forests and XGBoost) can sometimes benefit from normalization, but usually much

less so

 Tree models can learn to approximate almost any combination of features, but when a

combination is especially important they can still benefit from having it explicitly created,

especially when data is limited

 Counts are especially helpful for tree models, since these models don't have a natural way

of aggregating information across many features at once
28

Other methods for improving your dataset

 cleanlab automatically finds and fixes label issues in your ML datasets

 It can reduces manual work needed to fix data errors and helps train reliable ML models on

noisy real-world datasets

 The key idea is confidence learning and rank pruning

29

https://github.com/cleanlab/cleanlab

https://docs.cleanlab.ai/v2.0.0/index.html
https://arxiv.org/abs/1911.00068
https://arxiv.org/abs/1705.01936
https://github.com/cleanlab/cleanlab

Conclusion

 It’s pretty bad practice to treat a dataset as a black box. Before you start

training models, you should explore and visualize your data to gain insights

about what makes it predictive

 We can then screen for potential issues and perform data cleaning

 This will also inform and discover useful feature engineering

30

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd

Edition Chapter 1

[2] https://madewithml.com/courses/mlops/preprocessing/

[3] https://github.com/microsoft/Data-Science-For-Beginners/blob/main/2-

Working-With-Data/08-data-preparation/README.md

[4] https://www.kaggle.com/learn/feature-engineering

[5] https://www.kaggle.com/learn/data-cleaning

[6] An Introduction to Statistical Learning, second edition

31

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://madewithml.com/courses/mlops/preprocessing/
https://github.com/microsoft/Data-Science-For-Beginners/blob/main/2-Working-With-Data/08-data-preparation/README.md
https://www.kaggle.com/learn/feature-engineering
https://www.kaggle.com/learn/data-cleaning
https://www.statlearning.com/

Appendix

32

Resources and libraries

 Data cleaning and data centric AI

 https://github.com/HazyResearch/data-centric-ai

 https://github.com/cleanlab/cleanlab

 Data imputation

 https://github.com/iskandr/fancyimpute

 Exploratory data analysis

 https://www.kaggle.com/learn/data-visualization

 https://madewithml.com/courses/mlops/exploratory-data-analysis/

 pandas-profiling

 dataprep

 lux

 Pycaret

33

https://github.com/cleanlab/cleanlab
https://github.com/cleanlab/cleanlab
https://github.com/iskandr/fancyimpute
https://www.kaggle.com/learn/data-visualization
https://madewithml.com/courses/mlops/exploratory-data-analysis/
https://github.com/ydataai/pandas-profiling
https://github.com/sfu-db/dataprep
https://github.com/lux-org/lux
https://github.com/pycaret/pycaret

Resources and libraries

 Automatic feature engineering

 https://github.com/EthicalML/awesome-production-machine-learning#feature-engineering-

automation

 https://github.com/nccr-itmo/FEDOT

 https://github.com/alteryx/featuretools

 Imbalance data

 https://developers.google.com/machine-learning/data-prep/construct/sampling-

splitting/imbalanced-data

 Outlier and Anomaly

 https://github.com/EthicalML/awesome-production-machine-learning#outlier-and-

anomaly-detection

34

https://github.com/EthicalML/awesome-production-machine-learning#feature-engineering-automation
https://github.com/nccr-itmo/FEDOT
https://github.com/alteryx/featuretools
https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
https://github.com/EthicalML/awesome-production-machine-learning#outlier-and-anomaly-detection

Resources and libraries

 Feature store

 https://github.com/EthicalML/awesome-production-machine-learning#feature-stores

 Features engineering for images

 https://scikit-learn.org/stable/modules/feature_extraction.html#image-feature-extraction

 https://docs.opencv.org/4.x/db/d27/tutorial_py_table_of_contents_feature2d.html

 Features engineering for natural language

 https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction

35

https://github.com/EthicalML/awesome-production-machine-learning#feature-stores
https://scikit-learn.org/stable/modules/feature_extraction.html#image-feature-extraction
https://docs.opencv.org/4.x/db/d27/tutorial_py_table_of_contents_feature2d.html
https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction

Exploratory Data Analysis (EDA) and Data Mining

 The field of exploratory data analysis was established with

Tukey’s 1977 now-classic book Exploratory Data

Analysis [Tukey-1977]. Tukey presented simple plots (e.g.,

boxplots, scatterplots) that, along with summary statistics

(mean, median, quantiles, etc.), help paint a picture of a

data set.

 It is important to understand what you can do before you learn to

measure how well you seem to have done it

 Allow the data to speak for themselves before standard

assumptions or formal modeling

 The greatest value of a picture is when it forces us to notice what

we never expected to see

36

https://en.wikipedia.org/wiki/John_Tukey

https://en.wikipedia.org/wiki/John_Tukey

Visualization

 Seaborn combines simple statistical fits with plotting on pandas dataframes

 Multiple plot - joinplot and pairplot

 Regression plot – lmplot, regplot and residplot

 Matrix plot – heatmap and clusterplot

37

figure-level function

axes-level function

https://seaborn.pydata.org/introduction.html

Wage data

 Dataset from https://www.statlearning.com/

 Scatterplot and Boxplot

38

https://www.statlearning.com/

Stock Market data

 Boxplot and heatmap

39

Gene Expression Data

 Scatterplot

40

Auto data

 Pairplot, joinplot and displot

41

Bikeshare Data

 line plot

42

Multiple imputation

 It is common practice to perform multiple imputations, generating, for example,

𝑚 separate imputations for a single feature matrix

 Each of these 𝑚 imputations is then put through the subsequent analysis pipeline (e.g.

feature engineering, clustering, regression, classification). The 𝑚 final analysis results (e.g.

held-out validation errors) allow the data scientist to obtain understanding of how analytic

results may differ as a consequence of the inherent uncertainty caused by the missing

values. The above practice is called multiple imputation

 It is still an open problem as to how useful single vs. multiple imputation is in

the context of prediction and classification when the user is not interested in

measuring uncertainty due to missing values

43

Value normalization in deep learning

 In general, it isn’t safe to feed into a neural network data that takes relatively

large values or data that is heterogeneous (for example, data where one feature

is in the range 0–1 and another is in the range 100–200). Doing so can trigger

large gradient updates that will prevent the network from converging. To make

learning easier for your network, your data should have the following

characteristics:

 Take small values—Typically, most values should be in the 0–1 range

 Be homogenous—All features should take values in roughly the same range

 Additionally, the following stricter normalization practice is common and can

help, although it isn’t always necessary :

 Normalize each feature independently to have a mean of 0

 Normalize each feature independently to have a standard deviation of 1

44

Value normalization in deep learning

 In the MNIST classification, we started with image data encoded as integers in

the 0–255 range, encoding grayscale values. Before we fed this data into our

network, we had to cast it to float32 and divide by 255 so we’d end up with

floating-point values in the 0–1 range

 Similarly, in regression problem, we started with features that took a variety of

ranges—some features had small floating point values, and others had fairly

large integer values. Before we fed this data into our network, we had to

normalize each feature independently so that it had a standard deviation of 1

and a mean of 0

45

Confidence learning

 Confident learning (CL) has emerged as a subfield within supervised learning

and weak-supervision to

 Characterize label noise

 Find label errors

 Learn with noisy labels

46

 It can directly estimates the

joint distribution of noisy and

true labels and and ranking

examples to train with

confidence

https://l7.curtisnorthcutt.com/confident-learning

